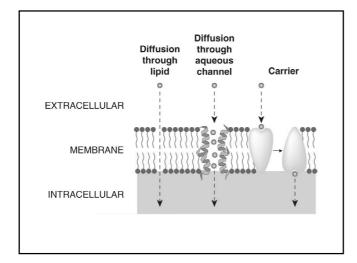


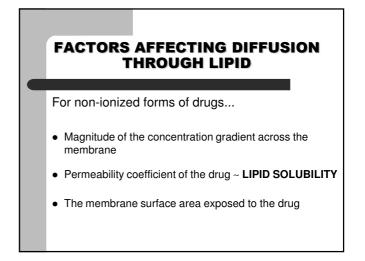
DEFINITION

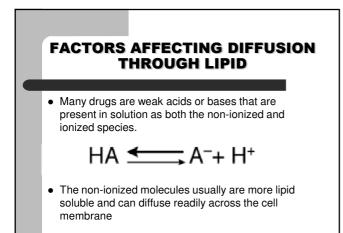
A branch of pharmacology that describes drug, A – Absorption

- D Distribution
- M Metabolism
- E Excretion

DRUG DISPOSITION


Drug molecules move around the body in two ways:


- Bulk flow (i.e. in the bloodstream, lymphatics or cerebrospinal fluid)
- II. Movement across cell membrane/s


TRANSFER OF DRUGS ACROSS MEMBRANES

Four main ways...

- 1) By diffusing directly through the lipid
- 2) By diffusing through aqueous pores formed by special proteins
- 3) By combination with a membrane transporter
- 4) By pinocytosis.

FACTORS AFFECTING DIFFUSION THROUGH LIPID

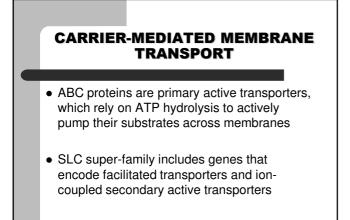
For ionized forms of drugs...

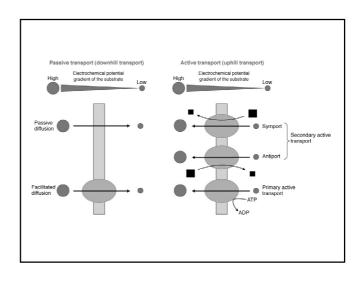
- pK_a the pH at which half the drug (weak acid or base electrolyte) is in its ionized form
- pH gradient across the membrane

At steady state, an acidic drug will accumulate on the more basic side of the membrane and a basic drug on the more acidic side....**ION TRAPPING**

Description Description Description

• In aspirin toxicity elevation of urine pH (by giving sodium bicarbonate) • promotes urinary excretion of aspirin (a weak acid)


ION TRAPPING IN CLINICAL PRACTICE


Acidic pH of the stomach and absorption of acidic drugs such as aspirin.....

- Enormous absorptive surface area of the villi and microvilli in the ileum compared with the much smaller surface area in the stomach overrides the importance of pH partition
- ... absorption of an acidic drug such as aspirin is promoted by drugs that accelerate gastric emptying (e.g. metoclopramide) > acidic stomach pH

CARRIER-MEDIATED MEMBRANE TRANSPORT

- Membrane transporters may mediate either drug uptake or efflux (creating a barrier to prevent the intracellular accumulation of potentially toxic substances)
- Two major super-families:ABC (ATP binding cassette) transporters
 - II. SLC (solute carrier) transporters

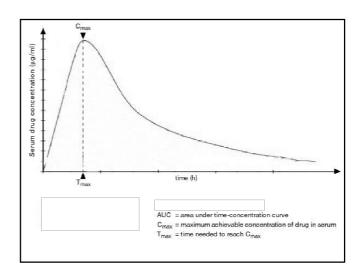
P-GLYCOPROTEINS

- P-glycoproteins (P for 'permeability') belong to the ABC transporter super-family
- P-glycoprotein is overexpressed in tumor cells after exposure to cytotoxic anticancer agents and pumps out the anticancer drugs, rendering cells resistant to their cytotoxic effects

DRUG ABSORPTION

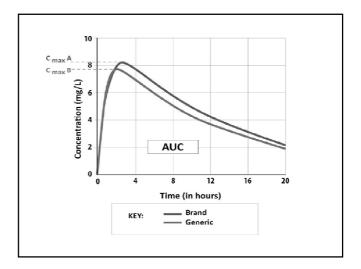
-passage of a drug from its site of administration into the plasma
- Absorption complete by definition for intravenous route
- For topical administration absorption not required for the drug to act

BIOAVAILABILITY


- ... the fraction of unchanged drug reaching the systemic circulation following administration by any route
- Bioavailability for i.v. Route is 100%

BIOAVAILABILITY

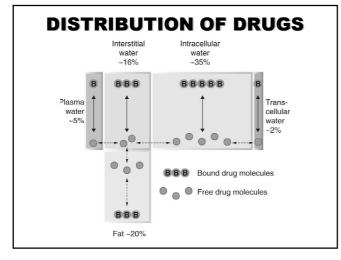
- Bioavailability for oral route may be limited by...
 - the characteristics of the dosage form
 - the drug's physicochemical properties
 - intestinal and liver metabolism
 - by transporter export back into the intestinal lumen

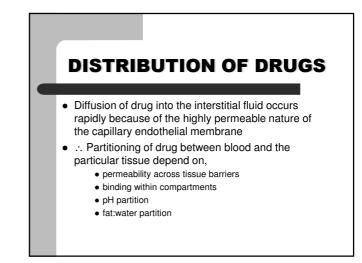

PHARMACEUTICAL EQUIVALENCE VS. BIOEQUIVALENCE

- **Pharmaceutical equivalents** contain the same active ingredients and are identical in strength or concentration, dosage form, and route of administration
- **Bioequivalence** rates of absorption and extents of bioavailability of the active ingredient are same

AREA UNDER THE CURVE (AUC)

- An index of the drug exposure of the body
- Closely dependent on the drug amount that enter into the systemic circulation and on the ability that the system has to eliminate the drug(clearance)

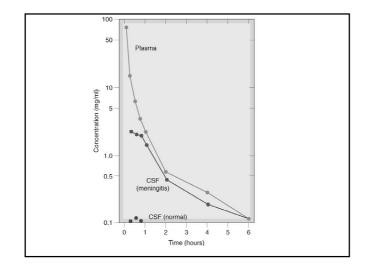



DISTRIBUTION OF DRUGS

- Following absorption or systemic administration into the bloodstream, a drug distributes into interstitial and intracellular fluids
- Initial distribution phase: rapid to well-perfused organs e.g. liver, kidney, brain
- Second distribution phase: slower and accounts for most of the extravascularly distributed drug e.g. muscle, fat, skin (Called **REDISTRIBUTION** when there's no tissue binding during initial distribution phase)

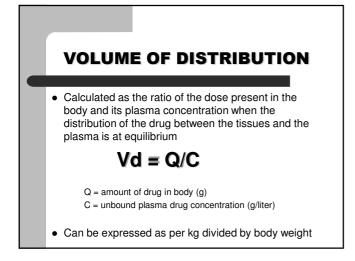
BINDING OF DRUGS TO PLASMA PROTEINS

- Many drugs circulate in the bloodstream bound to plasma proteins
 - e.g. Albumin acidic drugs
 - α_1 -acid glycoprotein basic drugs
- Binding is usually reversible
- Unbound drug is the pharmacologically active form
- Only unbound drug is in equilibrium across membranes ⇒ binding of a drug to plasma proteins limits its concentration in tissues and at its site of action



THE BLOOD-BRAIN BARRIER

- The barrier consists of a continuous layer of endothelial cells joined by tight junctions and surrounded by pericytes
- Membrane transporters e.g. P-gp that are efflux carriers present in the brain capillary endothelial cell and capable of removing a large number of chemically diverse drugs from the cell


THE BLOOD-BRAIN BARRIER

- The brain is inaccessible to many drugs with a lipid solubility that is insufficient to allow penetration of the blood-brain barrier
- The more lipophilic a drug, the more likely it is to cross the blood-brain barrier
- Inflammation can disrupt the integrity of the blood-brain barrier, allowing normally impermeant substances to enter the brain

VOLUME OF DISTRIBUTION

- The apparent volume of distribution (V_d), is defined as the volume of fluid required to contain the total amount of drug in the body at the same concentration as that present in the plasma
- A hypothetical value ⇒ avoid identifying a given V_d too closely with a particular anatomical compartment

CALCULATION

- Calculate Vd when 1 g is administered iv and the plasma drug level is 0.024 g/L
- Vd = 1 g/.024 g/L = 42 L (Total Body Water)

Drug	Liters/Kg
Quinacrine	500
Chloroquine	- 200
	=100
	E
Desmethylimipramine	- 50 -
Pentamidine	-20
Nortriptyline	
Digoxin	= 10 =
Meperidine Ethchlorvynol	5
Amphetamine Propranoloi Quinidine	-
Procainamide	-2
Tetracycline	
Phenobarbital Phenytoin	
Digitoxin Theophylline	- 0.5
Gentamicin Acetazolamide	■ Total extracellular volume is ~ 0.2 l/kg
Salicylic Acid Warfarin	
Tolbutamide	Plasma volume ~0.05 l/kg body weight
heparin	

VOLUME OF DISTRIBUTION

- Volume of distribution is used to...
 - 1. Compute a loading dose
 - 2. The residual amount of drug in the body knowing plasma concentrations